
Walking Pattern Simulation based on Virtual Reality Toolbox

Bum-Joo Lee, Yong-Duk Kim, Jeong-Ki Yoo, In-Won Park and Jong-Hwan Kim

Abstract— This paper presents the simulation of humanoid
walking pattern using 3D simulator with Virtual Reality Tool-
box. 3D simulator is essential for developing motion planning
and navigation algorithm. By using the Virtual Reality Toolbox
incorporated with MATLAB, it is easy and simple to handle 3D
objects. Detailed program architecture is explained through a
pseudo code. In addition, modifiable walking pattern generation
method is introduced and tested using the developed simulator.
In the simulator, 3D design data of humanoid designed using
CAD program are used. Example walking pattern is also
demonstrated.

I. INTRODUCTION

Although humanoid robots have inherent complexities in
locomotion, many successful robots are demonstrated. These
robots have abilities to walk, run and dance as humans do.
However, despite of these abilities, it is still insufficient to
work with human in outdoor environment. Since humanoid
robots are commonly composed of very complex hardware
and software systems in which various technologies are
integrated, it is not only cumbersome but also risky in the
aspect of experiment out of doors.

Walking pattern simulator helps to evaluate motion of a
robot without real hardware systems. By simulating before
examine with real robot, it is possible to expect reliable and
safe movement of a humanoid robot. Also, it helps to find and
prevent some possible problems during actual experiments.

The representative simulator is OpenHRP (Open Archi-
tecture Humanoid Robotics Platform) which is developed
in AIST (National Institute of Advanced Industrial Science
and Technology) [1]. The platform was built on CORBA
(Common Object Request Broker Architecture) which is a
standard middleware and ART-Linux (Ishiwata and Matsui,
1998) is used as the real-time controller of the robot. In
addition, the simulator and the controllers are regarded as
white boxes whose internal API is clearly described by
IDL (Interface Definition Language). Theses total packages
including the simulator and controllers are composed as
OpenHRP, which can simulate the dynamics of structure
varying kinematic chains between open chains and closed
ones that compose a humanoid robot. Collision-detection
between a robot and its environment can be accomplished
and utilized to calculate forward dynamics. Also, it can treat
several important sensory systems including vision sensing,
F/T sensing, and attitude sensor management.

Department of Electrical Engineering and Computer Science, Korea
Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-
Dong, Yuseong-Gu, Daejeon, 305-701, Republic of Korea (e-mail: {bjlee,
ydkim, jkyoo, iwpark, johkim}@rit.kaist.ac.kr).

In this paper, 3D walking pattern simulator is introduced,
which is under development by the RIT Lab. at KAIST.
Furthermore, novel walking pattern generation method used
in this simulator is explained. Although the proposed sim-
ulator is the first version of development, it holds several
advantages. First, the simulator was built using MATLAB
with Virtual Reality Toolbox. MATLAB provides powerful
engineering tool including frequently used mathematical
functions. It is easy to implement control algorithm including
visualization of data used in the algorithm. In addition,
by using Virtual Reality Toolbox, it is convenient to treat
3D objects defined with VRML (Virtual Reality Modeling
Language). Thus, it is possible to build a simulator within a
relatively short period.

The first part of this paper introduces a simulator for the
purpose of evaluation of proposed walking pattern generator.
Since basic element of MATLAB is an array that does
not require dimensioning, it is advantages to solve many
technical computing problems, especially those with matrix
and vector formulation. Note that it contains numerous merits
to acquire and analysis simulation data.

The second part of this paper introduces a method to
generate walking pattern to adjust from complex navigational
command. This algorithm is an extended version of conven-
tional 3D-LIPM method [2]. By manipulating the concept
of ZMP (Zero Moment Point), a simple and direct means
to control the humanoid dynamics is realized. Significantly,
the proposed walking pattern generation enables control of
CM velocity and step lengths independently. This was not
achievable with a conventional 3D-LIPM control algorithm.

The paper is organized as follows: Section II presents
fundamental elements of the simulator including 3D object
handling. In Section III, architecture of the simulator is
described. In Section IV, walking pattern generation which
can handle complex navigational commands is introduced.
Section V demonstrates experimental results and concluding
remarks follow in Section VI.

II. 3D ENVIRONMENT

A. Program Environment

1) Virtual Reality Toolbox: Simulator developed in this
paper is based on the Virtual Reality Toolbox. The Virtual
Reality Toolbox allows to connect an virtual world, defined
with VRML, to MATLAB or Simulink programs. VRML
was first developed by artists and engineers who want
to enhance the content of Web pages with advanced 3D
graphics and interaction with those graphics. After that, some
extensions are added and developed as VRML2 Standard.

The Virtual Reality Toolbox provides two types of interfaces:
MATLAB and Simulink. MATLAB interface is utilized in
the proposed paper. The Virtual Reality Toolbox provides a
flexible MATLAB interface to a virtual reality worlds. It is
very simple to control the virtual world by using functions
and methods by associating the MATLAB objects to a virtual
world. Using the Virtual Reality Toolbox, it takes few times
to make desire simulator and to test the proposed control
scheme.

2) MATLAB with VRML: MATLAB is a high-
performance language for technical computing. It integrates
computation, visualization, and programming in an easy-
to-use environment where problems and solutions are
expressed in familiar mathematical notation. MATLAB
features a family of add-on application-specific solutions
called, toolboxes.

B. 3D Data Processing

In order to use 3D-design files drawn in CAD tool,
it should pass through converting process with following
subsequences.

1) Design necessary parts and assemble into one link:
Generally, robot is designed with 3D CAD tool and these
data are also utilized in simulator for actuality. Fig. 1 shows
the design of small sized humanoid robot, HSR-VIII, which
is under production.

(a) (b)

Fig. 1. 3D design drawings (a) Shaded format (b) Visible and hidden edges
format

2) Alignment of the coordinate system into the assembled
part: Since the position and orientation of the links are
represented in their reference frame, the assembled part
should aligned exactly. Fig. 2 shows a shank part which is
aligned along the reference frame. In this figure, center of
the reference frame is coincided with center point between
the knee joint and the ankle joint.

3) Export the assembled into VRML file: After finishing
the design of each links, it should be saved or converted with
VRML file extension (*.wrl).

Fig. 2. Example of aligned link.

C. Coordinate system

1) Coordinate systems in each program: Fig. 3 shows
coordinate systems in each platform. VRML coordinate
system is different compared to humanoid robot coordinate
system. In the humanoid robotic, forward moving direction
is defined as x-axis in Cartesian coordinate and the height of
robot is defined in z-axis (Fig. 3 (a)). In contrast, y-axis of
the VRML coordinate system points upward and its z-axis
places objects either nearer or farther from front of the screen
(Fig. 3 (a)). Thus, it is critical to apply a proper conversion
relationship between these two different coordinate systems.

X

Y

Z

(a)

Z

X

Y

(b)

Fig. 3. Coordinate systems. (a) Robot coordinate system. (b) VRML
coordinate system.

2) Transformation from Rotation matrix to Rotation axis:
Normally, there are two kinds of notational methodology to
apply an object orientation relative to the inertial frame. One
is a rotation matrix well used in classical robotics and the
other is axis-orientation, which is well known as quaternion
and used in aerodynamics. In the Virtual Reality Toolbox, the
axis-orientation method is used. The relationships between
the rotational matrix and the axis orientation are given by:

cos φ = (r11 + r22 + r33 − 1)/2

a =
1

2 sin φ

[
r32 − r23 r13 − r31 r21 − r12

]T (1)

where a is a axis of orientation and φ is a orientation angle,
respectively. rij is a direction cosine of general rotation
matrix, which is given by:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 .

III. ARCHITECTURE OF THE SIMULATOR

A. Simulator layers

Generally, dynamic simulator is composed of following
three components:

1) Controller part
2) Dynamic engine part
3) Display part

Each component is developed as independent modules for
portability. The controller part takes charge of control al-
gorithm, which is expected to examine. In this simulator,
Modifiable Walking Pattern Generator is mounted as a gait
planner. Detailed algorithm is explained in section IV. In
the dynamic engine part, physical information of a robot is
considered. Main purpose of this part is to give a decision
whether the walking pattern is stable or not. Even though
conventional method is to use ZMP criteria, this in not yet
implemented in this simulator and left as a future work. Note
that main concern of this paper is to introduce how to make
simulation using VRML associated with MATLAB. Display
part draws a robot in 3D space.

Fig. 4. Virtual Reality Toolbox viewer.

Fig. 4 illustrates default viewer of the Virtual Reality
Toolbox for viewing virtual worlds. It contains navigational
panel, which is commonly used for navigation operations.
Note that simulation result can be saved as animation file
(*.avi). Using this viewer, walking patterns can be tested
with reality.

B. Program Components

As commented above, program is designed with several
dependent components. Block diagram of these components
is illustrated in Fig. 5.

1) Main code: This is a main routine where sub-routines
are executed. In this part, some initial and final operations
are carried out: 3D object shaped variable definition, flag
setting, simulation data management, etc.

2) Walking pattern code: This is a core algorithm part
to generate walking patterns. At every sample time, this
code is executed. To evaluate the proposed walking pattern
algorithm, complex navigational commands are requested.
After translating these commands into the desired walking

Walking Pattern Code

Main Code

- Modifiable walking
 pattern generation

Kinematics Code

- Inverse kinematics
- Forward kinematics

Display Code

- Coordinate transform
- Posture update

Fig. 5. Code structure.

state, the CM motions are generated under the 3D-LIPM
dynamics. Then, the position and orientation of the CM is
transferred into kinematics code.

3) Kinematics code: In this part, the CM motion is trans-
lated as joint angles using inverse kinematics. These data
are utilized as servo control inputs. It is assumed that in the
simulator, the joint angles are controlled exactly according
to the control inputs. Note that in order to obtain posture of
a robot with respect to the global frame, the position and
orientation of each link are calculated through the forward
kinematics.

4) Display code: Based on the VRML, robot is drawn in
3D space. After conversion of the coordinate systems from
the robot to the VRML, the position and orientation of each
link are updated at every sample time.

IV. WALKING PATTERN GENERATION

In order to take complex navigational commands, a hu-
manoid robot requires a walking pattern generator that is
able to modify the pattern at any point during walking [3],
[4]. Walking pattern generator embedded in the simulator
allows this by manipulating the ZMP trajectory in real time.
In the controller, a humanoid robot is modeled as 3D-LIPM
and its walking state, that is CM position and velocity, is
controlled independently.

A. Equations of Motion

Fig. 6 illustrates the model, which is used in the paper
for walking pattern generation. This model is introduced by
Kajita et al. [2] and holds some practical advantages. In this
model, it is assumed that the leg is a weightless telescopic
limb and the height of CM is constant, namely z = ZC .
With these assumption, the dynamic equations are given in
(2). [

ÿ − g
ZC

y

ẍ− g
ZC

x

]
= − g

ZC

[
yzmp

xzmp

]
. (2)

X

Y

Z

O

Plane CZz =

Fig. 6. 3D Linear Inverted Pendulum Model.

From (2), the state space equation of motion in the sagittal
plane with arbitrary ZMP function p(t) is derived with the
convolution integral form, which is shown as follows:

[
xf

TC ẋf

]
=

[
CT ST

ST CT

] [
xi

TC ẋi

]
− 1

TC

[∫ T

0
Stp(t)dt∫ T

0
Ctp(t)dt

]
(3)

where (xi, vi)/(xf , vf) represents initial/final position and
velocity of the CM in the sagittal, respectively. St and Ct are
defined as cosh(t/TC) and sinh(t/TC) with time constant
TC =

√
ZC/g. The functions p(t) is ZMP trajectory for the

sagittal. Lastly, p(t) = p(T − t). Solutions for motion in the
lateral plane can be similarly obtained.

The latter term of (3) represents additional state by ZMP
manipulation. Variations of ZMP trajectory means additional
acceleration or deceleration of the CM. This has the effect
that the CM motion can be flexibly adjusted in response to
dynamically changing navigational commands.

B. Modifiable Walking Pattern

Since the robot is modeled as the inverted pendulum with
a point mass, its state in 3D space can be fully represented in
terms of position and velocity. The CM position and velocity
are defined as two dimensional vector in the following.

Definition 1: WS (Walking State) is defined as follows:

x =
[
x TCv

]T
for sagittal motion

y =
[
y TCw

]T for lateral motion,
The primary factors constraining the walking pattern in

single support phase include the single support time and
the ZMP trajectory functions. By selecting suitable ZMP
trajectory and the single support time, it is possible to move
the current WS to the desired one. Among infinitely many
possible ZMP functions, it can be shown that any arbitrary
bounded ZMP function can be equivalently represented by a
simple step function with same bound constraints. In other
words, the walking state obtained at the end of a single
support phase given an arbitrary function can be obtained
from an appropriately selected step function.

To completely specify the ZMP trajectories in single
support phase would require determination of five parameters
(for step amplitudes and switching times for sagittal and
lateral plane and for state transition time). In terms of
implementation, it is desirable to reduce this by one so that

the parameters can be exactly determined from the equations
of motion (2). Subsequently, the use of a constant function
was selected for the sagittal ZMP function. Fig. 7 illustrates
two proposed ZMP functions.

stT t
0

)(tp

P

(a)

swT t
0

)(tq

stT
Q

Q-

(b)

Fig. 7. Proposed ZMP functions. (a) Constant function (sagittal plane). (b)
Step function (lateral plane).

While in single support phase, the robot can vary the
walking state by manipulating the ZMP function. However,
this does not mean that the robot has ability to change
the walking state to any desired one because the robot is
constrained by ZMP boundary. The ZMP functions must
be bounded to some region which is defined by physical
foot size. Thus, the desired state is also bounded by some
permissable region. This region is defined as the Feasible
Region, FR.

Definition 2: Given the initial WS wi, Zmin, Zmax and
some Tmax ≥ 0, a set is defined as the feasible region, FR,
if ∀wf ∈ FR, there exists a ZMP function z(t) with the
following properties:

z : [0, Tmax] → R2,
Zmin ≤ z(t) ≤ Zmax

such that
fz(wi) = wf

where f is the state transition function for either the sagittal
or lateral plane (3). FRc is defined as the infeasible region.

Fig. 8 illustrates this concept. It can be determined whether
the desired walking state is feasible or not by observing the
walking state is in FR or not. That is, FR does act as criteria
to judge that the navigational command is possible or not.

FR

FRC

Infinitely many
WS transitions

CMp

CMCvT

o

Fig. 8. Feasible and infeasible regions on WS plane (¯: initial WS, ⊕:
final WS ∈ FR, ⊗: final WS ∈ FRc).

Fig.9 shows the control block diagram used for HSR-
VII, which is most recently developed in RIT Lab. For
each sample time, the navigational command is converted

to the correspondent waking state, desired walking state.
Depending on the feasibility, the target walking state is
decided. Subsequently, motion of the CM is updated in real-
time.

ZMP
manipulation

Feasible
region

Navigational
cue

Walking Pattern Generator

Target
walking state

Feed-forward
walking state

Inverse
kinematics

Command
state Walking state

Convertor Desired
waking
state

Feed-back
controller

Sensory
system

HSR-VII

Fig. 9. Control block diagram.

V. SIMULATION

Example walking patterns are generated based on the
Modifiable Walking Pattern Generator for the small-sized
humanoid robot, HanSaRam-VIII [5]–[7].

A. Simulation Condition

Walking patterns for simulations were generated with
navigational commands in Fig. 10.

TimeTimeTimeTime WFWFWFWFLLLL WFWFWFWFRRRR WSWSWSWSLLLL WSWSWSWSRRRR ΘΘΘΘLLLL ΘΘΘΘRRRR TTTTssLssLssLssL TTTTssRssRssRssR TTTTdsLdsLdsLdsL TTTTddddssssRRRR

Initial 6 6 6 -6 0 0 0.4 0.4 0.2 0.2

After 1st step 6 6 6 -6 0 0 0.6 0.6 0.3 0.3

After 2nd step 5 6 7 -8 -10 -30 0.6 0.8 0.2 0.3

After 4th step 6 5 8 -7 30 10 0.8 0.6 0.3 0.2

After 6th step 2 -5 8 -7 60 10 0.8 0.6 0.3 0.2

After 9th step -6 -5 8 -8 60 0 0.8 0.6 0.3 0.2

After 11th step -6 -5 8 -8 0 -60 0.8 0.6 0.3 0.2

After 14th step 0 0 6 -6 0 0 0.6 0.6 0.2 0.2

Fig. 10. An example of navigational commands.

Navigational commands are composed of ten elements.
WF and WS represent forward and side step lengths, re-
spectively. Here, subscripts, L and R, mean left and right leg,
respectively. θ is rotation angle of the footstep. Lastly, Tss nd
Tds represent single and double support time, respectively.
With these objectives, navigational commands are informed
to the robot with listed times as specified.

B. Results

Fig. 11 shows the generated walking pattern using modifi-
able walking pattern generator. As illustrated, the footsteps
are generated, even when the commands varied suddenly,
that is, the sudden side and backward walking motion with
some rotations during the whole path.

−5

0

5

10

15

20

25

30

35

40

45

50
−30 −20 −10 0 10

x
[c

m
]

y [cm]

CM Trajectory

Desired Stable Region

Foot Position

Fig. 11. An example walking pattern.

Fig. 12 shows a sequence of snapshots, which was cap-
tured sequentially in two second intervals from the simulator.
As illustrated in Fig. 11, the robot achieved all that motions
including rotatively backward and side walking motions.
Refer to an animation clip [8], [9].

VI. CONCLUSIONS

In this paper, walking pattern simulator was introduced.
This simulator was built on Virtual Reality Toolbox with
MATLAB interface. The simulator was composed of three
modules, namely, waking pattern code, kinematics code and
display code. In the process of waking pattern genera-
tion, modifiable walking pattern algorithm was implemented,
which could handle complex navigational commands. In
kinematics code, inverse and forward kinematics were cal-
culated. Finally, display code took charge of 3D graphics.

Significantly, modifiable walking pattern algorithm was
detailed. This algorithm is based on the conventional 3D-
LIPM approach, but extended to manipulate the ZMP over
the convex hull of the foot polygon. By define a feasible
region, it was possible to check whether the command was
practicable or not. This algorithm were implemented on the
developed simulator and evaluated its usefulness. Dynamic
engine, which consider the interaction between a robot and
its environment, is left as the further work.

Fig. 12. A snapshot of the example walking pattern generated in the
simulator.

REFERENCES

[1] F. Kanehiro, H. Hirukawa, and S. Kajita, “OpenHRP: Open Archi-
tecture Humanoid Robitics Plarform” in the Int. Journal of Robotics
Research, vol. 23, no. 2, Feb. 2004, pp. 155-165.

[2] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H.
Hirukawa, “A Realtime Pattern Generator for Biped Walking” in Proc.
of IEEE Int. Conf. on Robotics and Automation, Washington, DC, May
2002, pp. 31-37.

[3] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and
T. Kanade, “Online environment reconstruction for biped navigation”
in Proc. of IEEE Int. Conf. on Robotics and Automations, Orlando,
Florida, May 2006, pp. 3089-3094.

[4] J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, and S. Kagami, “An
intelligent joystick for biped control” in Proc. of IEEE Int. Conf. on
Robotics and Automations, Orlando, Florida, May 2006, pp. 860-865.

[5] J.-H. Kim, D.-H. Kim, Y.-J. Kim, K.-H. Park, J.-H. Park, C.-K.

Moon, K. T. Seow, and K.-C. Koh, “Humanoid robot hansaram:
Recent progress and development” in J. of Advanced Computational
Intelligence & Intelligent Informatics, vol. 8, no. 1, Jan. 2004, pp.
45-55,

[6] Y.-D. Kim, B.-J. Lee, J.-K. Yoo, and J.-H. Kim, “Compensation for
the Landing Impact Force of a Humanoid Robot by Time Domain
Passivity Approach” in Proc. of IEEE Int. Conf. on Robotics and
Automations, Orlando, Florida, May 2006, pp. 1225-1230.

[7] J.-H. Kim, D.-H. Kim, Y.-J. Kim, K.-T. Seow, ”Soccer Robotics
(Springer Tracts in Advanced Robotics),” Springer Verlag,
3540218599, 326, Sep. 2004

[8] B.-J. Lee, D. Stonier, Y.-D. Kim, J.-K. Yoo, and J.-H.
Kim, “Modifiable Walking Pattern with HanSaRam-VII” at
http://rit.kaist.ac.kr/∼ritlab/research/HanSaRam/ MWPG simulation
.wmv , Apr. 2007.

[9] B.-J. Lee, D. Stonier, Y.-D. Kim, J.-K. Yoo, and J.-H.
Kim, “Modifiable Walking Pattern with HanSaRam-VII” at
http://rit.kaist.ac.kr/∼ritlab/research/HanSaRam/ Modifiable Walking
Pattern.wmv , Nov. 2006.

